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It is shown that the slope of the initial segment of the curve for rees tabl ishment  of the 
p re s su re  cannot be less than half of the asymptotic slope over a long period of t ime; the 
ar t ic le  gives the l imits  of the e r r o r s  in determination of the charac te r i s t i c  size of the 
block from the known lag t ime for rees tab l i shment  of the p res su re .  

In the ar t ic le  of Warren  and Root [1], based on the differential equations for the filtration of a liquid 
in a f rac tured  porous medium 

kl V~pl Op~ ^ , Op2 Op~ a 

f i rs t  proposed by G. I. Barenblatt  and Yu. P .  Zheltov [2], a dependence is obtained, describing the r e -  
es tabl ishment  of the p re s su re  in a borehole in an infinite s t ra tum in the form 

(0.1) 

Here 

2nklh . kit ~, ~_ ~.~ , 61" 

k I is the permeabi l i ty  coefficient of the f rac tured  medium ; # is the dynamic viscosi ty  of the liquid; V 2 is a 
Laplace opera tor ;  ill* and f12* are  the elast ic capacit ies of the f rac tured  medium and of the porous block, 
respect ive ly ;  Pl and P2 are  the p r e s s u r e s  at a distance r from the axis of the borehole, and in the blocks, 
respect ively;  a is a dimensionless  coefficient,  charac ter iz ing  the f rac tured porous medium; Pb is the in- 
c r ease  in the p res su re  in the borehole,  dimensionless;  q0 is the fully established output of a borehole up to 
its shutdown; h is the thickness of the s t ra tum;  Pl0 and Pib are  the stope p res su res  before and after shut-  
down of the borehole;  t is the t ime, calculated from the moment of shutdown of the borehole;  r b is the radius 
of the borehole;  T is the dimensionless  t ime; ~? is the charac te r i s t ic  pa ramete r  of the f rac tured porous 
medium; X and r are dimensionless  pa ramete r s  [1]. 

For  w ~ 0 it follows from (0.2) that* 

Pb = 1/~ [ln �9 + 0.80908 -- Ei (--)~)] (0.3) 

Dependence (0.2) and its limiting case,  dependence (0.3), a re  i l lustrated graphical ly in Fig. 1 (except 
for the dotted line); here  X = 5 �9 10 -6 (according to the data of [1]). A charac te r i s t i c  feature of the depend- 
ence (0.2) is the presence ,  s tar t ing at a certain value w ~ 0.002, of a horizontal  segment on the t rans i t ion-  
al line, connecting the s t ra ight  lines with parallel  s lopes.  The length of this segment increases  with an in- 
c r ease  in w. Therefore ,  for example, R. I. Medvedskii [4], on the basis of an analysis of dependence (0.3) 

*E.  A. Avakyan [3] and R. I .  Medvedskii [4] a r r ived  ear l ie r  at this type of dependence. 

Grozny.  Transla ted from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 137-145, 
September-October ,  1971. Original ar t ic le  submitted April 29, 1971. 

0 1974 Consultants Bureau, a division o f  Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. 
No part o f  this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission o f  the publisher. A 
copy o f  this article is available from the publisher for $15.00. 

748 



I 

/ ,/ z /  / 

g g 8 

Pb 

Fig. 1 

t 

in more  explicit form, drew a conclusion with respec t  to the t ransient  
stabilization of the initial segment of the actual curve for the r e -  
es tabl ishment  of the p re s su re  of a f ractured porous s t ra tum.  However, 
it is evident that such a form of the initial section is a resul t  of the 
adopted form of the flow function. In the derivation of the s tar t ing dif- 
ferential  equations (0.1) for (0.2) and (0.3), it was assumed that the 
value of the re turn  flow of liquid is proport ional  to the difference in 
p r e s s u r e  in the two media:  the f ractured and the porous.* Therefore ,  
it is of in teres t  to es t imate  to what degree this assumption cor responds  
to the actual situation with respec t  to rees tabl i shment  of the p res su re .  

It is obvious that the re turn-f low function is determined by the 
geometr ic  form of the block and by the rat io of the surface of the 
block to its volume. It is well known [6] that the g rea te r  the rat io of 

Ln 

U 

the surface of a body to its volume, other conditions being equal, the 
more  rapidly it is cooled or heated. It must  be postulated that analo- 

gous phenomena, but with respec t  to the p re s su re ,  will exist  also for porous bodies, saturated by a liquid. 
In compar ison with bodies of other form (with equal cha rac te r i s t i c  l inear dimensions),  a sphere has the 
grea tes t  ra t io  of surface to volume, while an infinite plate has the least .  Consequently, s t ra ta  in which the 
re turn- f low functions cor respond  to these forms of solids will have p ressu re  rees tabl i shment  curves with 
initial segments  whose positions will be limiting for s t ra ta  with blocks of any given form. 

As confirmation of what has been said above, let us consider  two problems involving the rees tab l i sh-  
ment  of the p res su re  in a borehole.  In the f i rs t  problem we shall assume that the re turn-f low function c o r -  
responds to unbounded porous plates,  while in the second problem we shall assume that the re turn flow of 
the liquid into the blocks takes place as if they had the form of a sphere .  

1. Let us consider  the f i rs t  problem.  In general  form,  the equation for the not fully established axi-  
symmet r i c  fil tration of a liquid in a f rac tured porous medium is 

kl (O~pl . l  - I Opi I 
- ~  ~;~'~ * 7- -~  J = ~'* ~ t  ~ + q  

where q is the value of the return flow of the liquid from the c racks  into the blocks.  

Substituting the value of the re turn  flow q = fl 2* 0P2 ~  where p~ ~ is the mean p res su re  in the plate 
along the z axis at a distance f rom the axis of the borehole,  we obtain, 

kl {O~pi -4- t Opl~ ~1" Opi __ ~ , Op2 ~ 0 T \ ~  -~ - -T 'o~J  - -  ot ~ Y (1.1) 

The z axis has its origin in the middle of the plate and is perpendicular  to its surface .  

Assuming that, up to its shutdown, the borehole operated under s teady-s ta te  conditions with an output 
q0, we express  the p r e s s u r e s  p~ and p2 ~ in t e rms  of 

u l ( r , t )  = p l  (r, t) - -  po (r) ,  u~ ~  = p ~ ~  (r, t) - -  po (r') 

where P0 (r) is the s teady-s ta te  p r e s s u r e  distribution before the shutdown of the borehole.  Then, instead of 
(1.1), we have 

02ui i Oul t /~l* Oul 0 ~ ~  ' kl 
Or + r Or ~ \~-~- ~ -  + - ~ J '  • = t%-~ - s  (1.2) 

To r e s to r e  the p re s su re  in a borehole with negligible radial  f i l trat ion of the liquid in the strata,  the 
initial and boundary conditions will be 

u i (r, t)[;=o = 0, u2 ~ (r, t)It=o = 0 
Oul (r, t) 

Ui (r, t)Ir~= ~- O, r" 0---07--- r=r b -  
qo~ 

2gkih 

(1.3) 

* The difficulty in evaluating this assumption is pointed out in the ar t ic le  of I. A. Volkov [5]. 

749 



Pb z /  Applying a L a p l a c e  t r a n s f o r m  with r e s p e c t  to the v a r i a b l e  t 
e ~3/~ / to (1.2) and (1.3), we obtain 

, t r r ,  s /~l* r r  U2 ~  ( 1 . 4 )  ~ Ul + 7- -I -- -~ 't~-P- '--'1 + 
u fi~ i P 

~ �9 1 U 1 (r, 8)Ir_~ = 0, FU11 (r, s)Ir=r b t q0~ , - -  ( 1 . 5 )  J ~ I s 2nklh 

# Z t .  / ' Le t  us find U2 ~ To this end,  we so lve  the o n e - d i m e n s i o n a l  F~-=y /?/ I 
i equat ion  of the p iezoconduc t iv i ty  for  the r e t u r n  flow of a l iquid in-  

n = l  1 
/ ~ to an unbounded po rous  m e d i u m  (a s t r a t u m ) .  In this  c a s e  we sha l l  

I a s s u m e  tha t  the ve loc i ty  of the f i l t r a t ion  of the l iquid into the p la te  / 
Z / i is  p e r p e n d i c u l a r  to i ts  s u r f a c e .  

i Thus ,  we have  
!c tn t 

0 ~ F IZ /8 O~'u~ I Ou2 k~ 
Oz2 ~, at = 0 '  n , = F B , ,  (1 .6 )  

Fig .  2 
wi th  the fol lowing ini t ia l  and bounda ry  condi t ions :  

u,  (z, r, t ) [ , ~  = 0 . 

u= (z, r, t) lz=n =- ul (r, t), ou2 (z,az r, l) iz=0 = 0 (1.7) 

H e r e  R is  the h a l f - t h i c k n e s s  of  the  p la te ,  i . e . ,  the c h a r a c t e r i s t i c  l i n e a r  d imens ion ;  k 2 is the p e r m e a -  
b i l i ty  coe f f i c i en t  of the p o r o u s  m e d i u m .  

Apply ing  a L a p l a c e  t r a n s f o r m  with  r e s p e c t  to the v a r i a b l e  t to (1.6) and (1.7), we find [7] 

- -  . T U 2 = U l c h I / ~ - ~ T z / c h S ,  6 = R / ~ - ~  

Hence  

R 
o 1 U~ = --~ ~ U~ dz = U1 th 6 / 5 (1.8) 

0 

Tak ing  accoun t  of  (1.8). Eq. {1.4) is  w r i t t e n  as 

Ul, t , s (~1" �9 th6~.  
+ T U~ -- ~ t~-~- -P -~- ) u~ = 0 (I .9) 

Obvious ly ,  the so lu t ion  of (1.9) which  s a t i s f i e s  the  bounda ry  condi t ions  (1.5) is  

. , =  qo,,. .o{  +< 
2nk,h s y~S)rbK,( y~(7)rb) ' ~ t, ph (1.10) 

A p p r o x i m a t e l y  (for q ~ (s)rc  < 0.01), r e p l a c i n g  the modi f i ed  B e s s e l  funct ions  of the f i r s t  kind, of z e r o  
and f i r s t  o r d e r s ,  by  t h e i r  a s y m p t o t i c  e x p r e s s i o n s  for  a s m a l l  a r g u m e n t ,  for  the b o r e h o l e  we obtain (r = r b) 

u~(~,s)= qo~ 1 2:~1 h ~ ( - -  In ~ "1/'~-(-~) (T = t.78i...) 

L e t  us  c o n s i d e r  the c a s e  when the va lue  of t9 l* m a y  be n e g l e c t e d .  Then,  a f t e r  s i m p l e  t r a n s f o r m a t i o n s  

+o,. { .41 .  ,x .  , , ~  U l ( r b ' s ) =  2---~K~h . :  ] / ~ r l ~  2 s 
oo 

q- 2 ~ '  2n--i i e• l-- 2 s(2n -- i) 81 } 
7t=l 

Going o v e r  to the i n v e r s e  t r a n s f o r m ,  and in t roduc ing  the p r e s s u r e  Pb ,  we obtain 

= - r  L'' ~ - in !/7r7~ + 2,,,=, ~":~ ]mo = ~,tR,) 3 1 )  
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Figure 2 shows a curve of the dependence (1.11) (solid line). This curve was plotted from the follow- 
ing star t ing data: R = 1 m; r b = 0.1 m; n = 2 �9 10 -2 m 2 / s e c ;  n2 = 2 �9 10 -6 m 2 / s e c .  

On the plotted curve ,  there are  two separate  segments ,  1 and 2. Segment 1 is descr ibed by the depend- 

ence 

t r, 4,,t V 0) (i.127 Pb = - U  ~ l n  ~ - -  i n  

since,  at sufficiently small  values of F0, the sum 

2 ~ t ~ 2n--i (1.13) 

by virtue of the proper t ies  of the function erfc ~, for small  values of the argument  ~, approaches zero .  

Segment 2 is descr ibed by the dependence 

t 4~t 
Pb = -5- In zr~ (1.14) 

since,  s tar t ing f rom sufficiently large  values of F0, the sum (1.3) will no longer be equal to zero  and, as ca l -  
culations show, rapidly approaches in J y F 0. 

As can be seen from (1.12) and (1.14), segment 1 has a slope which is twice as small  as the slope of 
segment  2, and cor responds  to a situation in the s t ra tum when the blocks (plates) a lready behave as s emi -  
infinite bodies.  The intercepts  on the axis of ordinates are  

i R OA = t , 4~: A B  =-K-in 
i n  ~rb--- ~ , V~-G 

The absc i ssa  of the point of in tersect ion of the prolongations of segments  1 and 2 is equal to 4AB. The 
lag time for  the rees tabl i shment  of the p res su re ,  ~'3, determined using the method proposed in [4], for the 
model of a s t ra tum under considerat ion,  a ssumes  the following meaning: ~'3 = R 2 / n 2 .  Taking account of 
this equality, the dependence (1.117 is shown by the dotted line on Fig.  1. 

We note that, instead of (1.117, the following expression can be used for Pb: 

co co 

~-f ln  4• . %= 

if th6 is represen ted  in the form of the rat io of the infinite products [8]. 

For  smal l  values of the complex 5, which cor responds  to large values of F0, Eq. (1.9) is written as 
follows: 

and its solution will be 

t U'  ,~ ( 6 , *  U~" + -  7- - - - ~ - ~ ) s r + l ) U i = O  

i 4kit 
Pb = ~ -  In 7~ (~1" + ~z*)r ~ (1.15) 

Graphically,  it is i l lustrated by the s traight  line 3 (Fig. 2), passing somewhat below line 2, and coin- 
ciding with it at ~ 1 * ~ 0. 

For  large values of 6, when t h S / 6  becomes negligibly smal l  in compar ison with i l l * / f 1 2 * ,  from (1.9) 
we obtain 

and the solution will be 

. t - -  ~" U~ ---- O, Ui Jr -7- Ui' x~ k l  

•  N3:* 

i . 4• 
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On Fig. 2, this solution is shown by line 4. The distance along the ordinate between lines 4 and 3 is 
determined by the difference between (1.16) and (1.15) AP b = - lnv~- ,  i.e., r is determined by the same ex-  
press ion as in [1]. This argues  that, at ill* r 0, independently of the form of the re turn-f low function on 
the curve of the rees tab l i shment  of the p ressure ,  there should be two parallel  lines, separated by a d is -  
tance o f - l n  r 

2. Let us consider  the problem of the rees tabl ishment  of the p ressure  in a borehole,  when the blocks 
have the form of spheres .  Here,  it is also n e c e s s a r y  to solve the equation of piezoconductivity 

a~u~ 2 au2 t au2 
ap~ 4 p a~ ~ at = 0  (2.1) 

under the following initial and boundary conditions: 

u s (p, r, t)ll=9 -- 0 

u,(p,r , t ) io= ~ = ui(r,t),.  Ou~(p,r;t)o~ [~=a = 0 (2.2) 

where p is the instantaneous coordinate;  R is the radius of a sphere,  i.e., the charac te r i s t ic  l inear dimen-  
sion. 

Car ry ing  out t ransformat ions ,  we obtain 

= - ~- = Us@ (s) 

Fur ther ,  analogously to the preceding case ,  we have 

Ul (rb, s ) = qo. l _ _ ( _ l n ~  h ~-~-q)(s-------~) 2=kih s \ (2 .3)  

Transforming  (2.3), we obtain 

qol~ r i , 4xR t ln s 
Ui  (rly s) = ~ [-~- ,n 372--~u_~r r ~ 

(2.4) 

For  large values of 5, it can be assumed that thG ~ 1. Then, expanding the last t e rm in a ser ies ,  we 
obtain 

qdL In U1 (r b, s) = ~ 3,r3 V-~rb~ 2 s "]- = (2 .5)  

Going over in (2.5) to the inverse  t ransform,  for small  values of F 0, we obtain 

i F. 4xt t ~ 2 n 
~b ~ -~-  [ m  ~ - -  In ] f ~ o - -  In 3 + ~ ,~=,- (2n --  l)(2n --  i)!! 

c o  

I i y~ ] 

or,  limiting ourselves  to the f i r s t  t e rms  in the se r i e s  

4 . ,  2 - -  1 4 
P b = ' +  [ln u - - I n  ] / - ~ o -  in 3 4-"~-~]fFo-F "-E Fo -4- ~-~- ~ . (2.6) 

It follows f rom the la t ter  expression that, in the case under consideration,  the slope of segment 1 is 
g r ea t e r  than the slope of the same segment  for a s t ra tum with a re turn-f low function corresponding to 
blocks in the form of unbounded plates.  A curve of dependence (2.6), plotted f rom the same star t ing data as 
in the preceding problem, is shown in Fig. 2 (line DE). 

For  smal l  values of 5, it is difficult to obtain the inverse  t r ans fo rm of (2.3). Therefore ,  we represen t  
@ (s) in the fo rm of the ser ies  [8] 
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o~ 

a (2 .7)  

o r  

c~ co 

r  7, 6 6 + n~=------~ + t - :9, ~ . ~  (2 .s) 

s i n c e ,  f u r t h e r  on,* t h i s  e x p r e s s i o n  for  ~ (s) w i l l  be u s e d  for  s m a l l  v a l u e s  of n .  
o b t a i n e d  f r o m  the  r e l a t i o n s h i p  [9] 

�9 ~ exp (- -  n2~2Fo) 
n = l  

The l a t t e r  e x p r e s s i o n  can be  

u s i n g  the r u l e  of  o p e r a t i o n a l  c o m p u t a t i o n  f '  (t) = s F  (s) - f ( 0 ) .  

Thus ,  (2.3) i s  w r i t t e n  as  fo l lows :  

qoB i in " r r b l f f  s 6 @ t -- (2.9) 
U l ( r  b,s)=2~k~h s --  -2- ~/ -~- 6 + n ~  2 , 

L i m i t i n g  o u r s e l v e s  in (2.9) to the  n u m b e r  of t e r m s  in the s u m s :  n = 1, n = 2, n = 3, n = 4, n = 5, e t c . ,  
and f inding  c o n s e c u t i v e l y  the  i n v e r s e  t r a n s f o r m s  U 1 (rb,  s) we can p lo t  the  c u r v e  fo r  r e e s t a b l i s h m e n t  of the  

p r e s s u r e  for  s m a l l  v a l u e s  of 6 (F ig .  2).  

ThUS, atn = i 

for  n = 5 

pb ~ ~1 [In ~4• _ Ei(_  a~Fo ) + Ei(-- 2.5506~2Fo)1 

pb = ~_ [,n T~ ~ l  r, 4• - ~ "  ( -  u~Foi - E~ ( -  4~Fo) - Z~ (-- 9~:Fo) 

--  Ei ( - -  t6a~Fo) -- E~ ( - -  25~2Fo) + E~ (--  2.0492~Fo) 
§ Ei (--  6.0805~2Fo) + E~ (--  t2.2058a~Fo) 

+ Ei ( - -  20.6557n2Fo) -t- El (--  41.5842n2Fo)] 

The  c a l c u l a t i o n s  show tha t ,  a l r e a d y  a t  n = 1, the  c u r v e  ob ta ined  u s i n g  th i s  m e t h o d  has  a c o m m o n  s e c -  
t ion wi th  the  c u r v e  d e s c r i b e d  by f o r m u l a  (2.6). Wi th  an i n c r e a s e  in the  v a l u e  of n ,  the  r e g i o n  of c o i n c i d e n c e  
of t h e s e  c u r v e s  i n c r e a s e s  (F ig .  2). T h i s  m e a n s  tha t  a c u r v e  for  the  r e e s t a b l i s h m e n t  of the  p r e s s u r e  can 
be  p lo t t ed  a l s o  for  s m a l l  v a l u e s  of  F 0 ( l a rge  v a l u e s  of 6); h o w e v e r ,  in th i s  c a s e ,  g r e a t  d i f f i c u l t i e s  a r i s e  in 
the  c a l c u l a t i o n s .  

F r o m  the  c u r v e  fo r  the  r e e s t a b l i s h m e n t  of the  p r e s s u r e  {curve DE on F i g .  2) i t  is  e v i d e n t  tha t ,  in the  
c a s e  u n d e r  c o n s i d e r a t i o n ,  the  i n i t i a l  s e g m e n t  is  l o c a t e d  be low the  s a m e  s e g m e n t  for  a s t r a t u m  wi th  a r e t u r n -  
f low funct ion c o r r e s p o n d i n g  to b l o c k s ,  i . e . ,  to unbounded  p l a t e s .  Th i s  i s  e x p l a i n e d  by  the h igh  r a t e  of the r e -  
t u rn  f low into  the  b l o c k s ,  w i th  a r e t u r n - f l o w  funct ion c o r r e s p o n d i n g  to a s p h e r i c a l  f o r m  of the  b lock ,  which  
p e r m i t s  a s m a l l e r  amoun t  of l i qu id  to a r r i v e  at  the  b o r e h o l e  t h rough  the c r a c k s .  

The  d i f f e r e n c e  in the  o r d i n a t e s  of the  i n i t i a l  s e g m e n t s  i n c r e a s e s  in the  d i r e c t i o n  of a d e c r e a s e  in the  
shutdown t i m e ,  and a p p r o a c h e s  In 3 at  s m a l l  v a l u e s  of ~ 2 / R  2 . In o t h e r  w o r d s ,  the  s l o p e s  of the  i n i t i a l  s e g -  
m e n t s  for  s m a l l  v a l u e s  of ~r 2, in sp i t e  of the  d i f f e r e n t  r e t u r n - f l o w  func t ions ,  a r e  p r a c t i c a l l y  i d e n t i c a l  at  
the  s t a r t  of r e e s t a b l i s h m e n t  of the  p r e s s u r e ,  and  only wi th  an i n c r e a s e  in the  shutdown t i m e  does  the s l o p e  

* Wi th  
n 
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of the segment  corresponding to spherical  blocks s ta r t  to r i se ;  this is explained by the radial cha rac te r  of 
the fi l tration of the liquid in spherical  blocks.  

If a semi- inf ini te  body is taken as a model of the block, the curve of the rees tabl ishment  of the p r e s -  
sure  in the borehole will have the same slope as the initial segment of the curve for the reestabl ishment  of 
the p r e s s u r e  for a s t ra tum with blocks in the form of infinite plates.r Consequently, the return flow of the 
liquid into the blocks, i .e. ,  the plates, at f i rs t  takes place in the same way as into semi-infini te  bodies. This 
type of re turn flow is observed until the bounded charac te r  of the plate with respec t  to its thickness s tar ts  
to have an effect.  This cor responds  exactly to the end of the initial segment  1 on the curve for the r e -  
establ ishment  of the p r e s s u r e  (Fig. 2). 

F r o m  superposed curves  for the rees tabl ishment  of the p ressure ,  and from the formulas describing 
the curves ,  it follows that at fl 1" = 0, the slopes of the initial segments  at the s tar t  of the rees tabl ishment  
of the p res su re  for s t r a ta  with blocks of any given form,  of sufficiently large sizes,  not necessa r i ly  of 
identical fo rm and .dimensions, will be exactly the same,  equal to half of the slope of the asymptotic curve 
for the rees tabl i shment  of the p r e s s u r e  with a large value of t, and will cor respond to blocks acting as 
semi-bounded bodies.  

Attention must  be called to the fact that the slope of the initial segment for a s t ra tum with a r e tu rn -  
flow function corresponding to spherical  blocks is g rea te r  over its whole extension than the slope of the ini-  
tial segment  for a s t ra tum with a re turn-f low function corresponding to blocks, i.e., to infinite plates.  

For  a s t ra tum with rea l  blocks, since they are  of different s izes ,  this special  charac te r i s t ic  should 
appear  even more  sharply.  Therefore ,  the initial segment  (and the transi t ional  segment at/31" ~ 0) of the 
curve for the rees tabl i shment  of the p re s su re  cannot be horizontal,  as follows from [1], and only at the 
l imit  can it attain half of the asymptotic  slope, at large values of t (the dotted line in Fig. 1). A curve for 
the rees tab l i shment  of p r e s su re  with a horizontal  segment has no physical meaning (the liquid flows to the 
borehole ,  but the p re s su re  is not reestabl ished) .  

The initial segment  for a s t ra tum with a re turn-f low function corresponding to a geometr ical  body of 
another form,  for example a cube (with equal charac te r i s t i c s  of its l inear  dimensions) will lie between the 
initial segments  for  a plate and a sphere .  

3. In the ar t ic le  by G. I. Barenblat t ,  Yu. P .  Zheltov, and I. N. Kochin [10], it is shown that the follow- 
ing connection exists between the lag t ime of the redis t r ibuted p res su re  r 3 and the parameter  a ~ k2a2: 

~1 kl i 
~X G2~2 

Since the specific fr ict ion sur face  ~2 ~ 1 / l  2, then 

~3 ~ l~ / • ( 3 . 1 )  

Relationship (3.1), obtained on the basis of the theory of dimensionality,  does not permit  determining 
the cha rac te r i s t i c  l inear dimension with respec t  to a known value of T 3. And what is more ,  there  are  no 
es t imates  indicating the possible limits of the dimensions of blocks corresponding to an actual value of T 3. 
Never the less ,  such evaluations can be made,  s tar t ing from the resul ts  obtained above. Thus, for a s t ra tum 
with a re turn-f low function corresponding to blocks, i.e., to infinite plates,  relat ionship (3.1) goes over im-  
mediately into the equality 

Ts ~ R2 / • 

For  a s t ra tum with a re turn-f low function corresponding to spherical  blocks, such a value of T3, de te r -  
mined in accordance  with [4], is equal to R2/9~t2 (i.e., this same value of ~'3 will cor respond either to half 
the thickness of the plate, or  to ~ the radius of the sphere).  In general  form, this dependence may be r ep -  
resented  thus: 

~fv-~ = Rv (3.2) 

It is eas i ly  shown that this is actually so, using the same method of a set of equations in operational form. 

754 



where  Rv is the genera l i zed  dimension of the body which, for an infinite plate is equal to  R, for an infinite 
cyl inder  to 1/2 R, and for a sphere  to 1/3R [6]. 

Thus,  f rom the value of ~'3, only the genera l ized  dimension of the block can be found. 

Using the concept  of the genera l i zed  dimension of a block,  let  us evaluate  the possible  e r r o r  in d e t e r -  
mining the c h a r a c t e r i s t i c  l inear  dimension of the block f rom a known value of T 3 . 

Let  us a s sum e  that  the r e tu rn - f low function co r r e sponds  to spher ica l  blocks,  while, in de terminat ion 
of the c h a r a c t e r i s t i c  l inear  dimension of the blocks ,  the r e tu rn - f low function was a s sumed  to co r r e spond  to 
blocks ,  i .e . ,  to infinite p la tes .  Then, the value of l found will obviously be th ree  t imes  less  than the actual  
value.  And, on the con t r a ry ,  we take the s ta r t ing  re tu rn - f low function cor responding  to blocks,  i .e. ,  to in-  
finite p la tes ,  the value of l found will be approx imate ly  ttu.ee t imes  g r e a t e r  than the actual  value.  :In other 
words ,  the m a x i m a l  e r r o r s  in de terminat ion  of the c h a r a c t e r i s t i c  l inear  dimension of the blocks f rom the 
lag t ime  of the r e e s t a b l i s h m e n t  of the p r e s s u r e  can l ie only within the above l imi t s .  Actually,  in d e t e r -  
ruination of the c h a r a c t e r i s t i c  l inear  dimension of the blocks of a r ea l  s t r a tum,  with application,  for  example ,  
to a s t r a t um with blocks ,  i .e . ,  infinite pla tes ,  the e r r o r  will be l e s s .  

Let  us now evaluate  the poss ib le  t ime  requ i red  for  the appearance ,  on the curve  for the r e e s t a b l i s h -  
ment  of the p r e s s u r e ,  of the c h a r a c t e r i s t i c  segment  n e c e s s a r y  for  de termining  ~'3. To this end, we use  data 
per ta ining to the K a r a b u l a k - A c h a l u k i  Lower  Cre taceous  deposi t .  For  the rock  of the blocks of this deposi t ,  
the value of the pe rmeab i l i t y  v a r i e s  f rom 0.1 �9 1 0  -12  to 0.001 " 1 0  - i 2  m 2 ;  the poros i ty  of the rocks  irL the 
blocks ,  on the ave rage ,  is 13%; the v i scos i ty  of the pe t ro leum is 0.26 �9 10 -3 N - s e c / m 2 ;  the compre s s ib i l i t y  
coeff ic ient  of the liquid is 25.2 �9 10 -2 m 2 / N .  The l~iezoconductivity of the blocks,  ca lcula ted  roughly f rom 
these  data,  is equal to ~r 2 = 1.2-1.2 " 10 -2 m 2 / s e c .  

We a s sume  that the s t r a t u m  is made  up of infinite porous  p la tes .  Then, with a mean value of the 
d imensions  of the blocks equal to 0.3m (R = 0.15m), the lag t ime  of the r e e s t a b l i s h m e n t  of the p r e s s u r e  
~'3 = 2-2 �9 10 "~ s ec .  The re fo re ,  in p rac t i ce ,  it is imposs ib le  to obtain a cfirve for  the r ee s t ab l i shmen t  of 
the p r e s s u r e  having an ini t ial  segment .  

However ,  with a mean  value of the s ize  of the blocks equal to 6m (R = 3m), ~'3 = 7.5-750 sec .  

Under these  condit ions,  it a l r eady  becomes  poss ib le  to obtain a cu rve  for  the r e e s t a b l i s h m e n t  of the 
p r e s s u r e ,  having an init ial  s egmen t .  

I t  should be noted that an analogous r e su l t  has been obtained by V. P.  Stepanov, using a somewhat  di f -  
fe ren t  method.  

The authors  thank V. P.  Stepanov for his d iscuss ion of the a r t ic le  and for  his encouragement .  
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